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Isogeny classes and endomorphism algebras
of abelian varieties over finite fields

Yu.G. Zarhin

Abstract. We construct nonisogenous simple ordinary abelian varieties
over an algebraic closure of a finite field with isomorphic endomorphism
algebras.
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fields.

§ 1. Introduction

1.1. If K is a number field, then we write Cl(K) for the (finite commutative) ideal
class group of K, cl(K) for the class number of K (i. e., the cardinality of Cl(K))
and exp(K) for the exponent of Cl(K). Clearly, exp(K) divides cl(K). (The
equality holds if and only if Cl(K) is cyclic, which is not always the case, see [1],
Tables.) In addition, exp(K) is odd if and only if cl(K) is odd. We write OK for
the ring of integers in K and UK for the group of units, i. e., the multiplicative
group of invertible elements in OK . As usual, an element of UK is called a unit
in K or a K-unit. It is well known (and can be easily checked) that if a unit u in K
is a square in K, then it is also a square in UK .

Let p be a prime and q a positive integer that is a power of p. We write Fp for
the p-element finite field and Fq for its q-element overfield. As usual, Fp denotes
an algebraic closure of Fp, which is also an algebraic closure of Fq. We have

Fp ⊂ Fq ⊂ Fp.

If X is an abelian variety over Fp, then we write End0(X) for its endomorphism
algebra End(X) ⊗ Q, which is a finite-dimensional semisimple algebra over the
field Q of rational numbers. If X is defined over k = Fq, then we write Endk(X)
for its ring of k-endomorphisms and End0k(X) for the Q-algebra Endk(X)⊗Q; one
may view End0k(X) as the Q-subalgebra of End0(X) with the same 1.

It is well known that isogenous abelian varieties have isomorphic endomor-
phism algebras and the same dimension (and p-adic Newton polygon). In addition,
an abelian variety is simple if and only if its endomorphism algebra is a division
algebra over Q. It is also known (Grothendieck–Tate) that End0(X) uniquely deter-
mines the dimension of X [2]. Namely, 2 dim(X) is the maximal Q-dimension of
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a semisimple commutative Q-subalgebra of End0(X). However, it turns out that
there are nonisogenous abelian varieties over Fp with isomorphic endomorphism
algebras.

The aim of this note is to provide explicit examples of such varieties.
Let me start with a classical result of M. Deuring about elliptic curves [3], [4],

Chapter 4.

Proposition 1.2. Let K be an imaginary quadratic field.
(i) Let p be a prime and E an elliptic curve over Fp such that End0(E) is

isomorphic to K .
Then p splits in K and E is ordinary.

(ii) Let p be a prime that splits in K .
Then all the elliptic curves E over Fp with End0(E) ∼= K are mutually
isogenous.

I did not find in the literature the following assertion that complements Propo-
sition 1.2.

Proposition 1.3. Let K be an imaginary quadratic field and p a prime that splits
in K . Let us put q = pexp(K) .

Then there exists an elliptic curve E that is defined with all its endomorphisms
over Fq and such that End0(E) ∼= K .

Remark 1.4. One may deduce from ([5], Satz 3, [6], § 6, Corollary 1, p. 507) that if
we put q1 = pcl(K), then there exists an elliptic curve E that is defined with all its
endomorphisms over Fq1 and such that End(E)∼=OK (and therefore End0(E)∼=K).

The next result is an analogue of Proposition 1.2 for abelian surfaces and quartic
fields.

Proposition 1.5. Let K be a CM quartic field that is a cyclic extension of Q.
(i) Let p be a prime and Y an abelian surface over Fp such that End0(Y ) is

isomorphic to K .
Then p splits completely in K and Y is simple ordinary.

(ii) Let p be a prime that splits completely in K .
Then all the abelian surfaces Y over Fp with End0(Y ) ∼= K are mutually
isogenous. In addition, there exists such an Y that is defined with all its
endomorphisms over Fp2c where c = exp(K).

Our main result is the following assertion.

Theorem 1.6. Let n be a positive integer and K be a CM field that is a cyclic
degree 2n extension of Q. Let K0 be the only degree 2n−1 subfield of K , which is
the maximal totally real subfield of K . Let us put c = exp(K).

(i) Let p be a prime and A an abelian variety over Fp such that End0(A) is
isomorphic to K .

Then p splits completely in K and A is an ordinary simple abelian variety of
dimension 2n−1 .

(ii) Let p be a prime that splits completely in K . Let us put q = pc .
(1) There are precisely 22

n−1−n isogeny classes of abelian varieties A over Fp ,
whose endomorphism algebra End0(A) is isomorphic to K .
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(2) Each of these isogeny classes contains an abelian variety that is defined
with all its endomorphisms over Fq2 .

(3) Assume additionally that every totally positive unit in K0 is a square
in K0 .
Then each of these isogeny classes contains an abelian variety that is
defined with all its endomorphisms over Fq .

Remark 1.7. (a) If n = 1, then K is an imaginary quadratic field and therefore
K0 = Q and UQ = {±1}. The only (totally) positive unit in Q is 1, which is
obviously a square in Q. Hence, Propositions 1.2 and 1.3 are the special cases of
Theorem 1.6 with n = 1. On the other hand, Proposition 1.5 follows readily from
the special case of Theorem 1.6 with n = 2.

(b) If n ⩾ 3, then the number 22
n−1−n of the corresponding isogeny classes

is strictly greater than 1. This gives us examples of nonisogenous abelian vari-
eties over Fp, whose endomorphism algebras are isomorphic to K and therefore are
mutually isomorphic.

(c) Now let n be an arbitrary positive integer. By Chebotarev’s density theorem,
the set of primes that split completely in K is infinite (and even has a positive
density 1/2n).

Corollary 1.8. Let r be a Fermat prime (e.g., r = 3, 5, 17, 257, 65537). Let p be
a prime that is congruent to 1 modulo r . Let us put

isg(r) =
2(r−1)/2

(r − 1)
. (1)

Then there are precisely isg(r) isogeny classes of simple ((r − 1)/2)-dimensional
ordinary abelian varieties A over Fp , whose endomorphism algebra

End0(A) = End(A)⊗Q

is isomorphic to the rth cyclotomic field Q(ζr). In addition, if c = exp(Q(ζr)) and
q = pc , then each of these isogeny classes contains an abelian variety that is defined
with all its endomorphisms over Fq .

Remark 1.9. The congruence condition on p means that p splits completely in Q(ζr).
There are infinitely many such p thanks to Dirichlet’s theorem on primes in an arith-
metic progression. More precisely, the set of such primes has density 1/(r − 1).

Remark 1.10. It is well known that the property of being simple (respectively, ordi-
nary) is invariant under isogenies.

Remark 1.11. Let r be a Fermat prime. Clearly, isg(r) = 1 if and only if r ⩽ 5.
Let p be a prime that is congruent to 1 mod r. It follows from Theorem 1.6

that r ⩽ 5 if and only if there is a precisely one isogeny class of simple ordinary
((r − 1)/2)-dimensional abelelian varieties over Fp, whose endomorphiam algebra
is isomorphic to Q(ζr). In other words, all such abelian varieties are mutually
isogenous over Fp, if and only if r ∈ {3, 5}.

Example 1.12. (i) Take r = 3. We have isg(3) = 1. It follows from Remark 1.11
that if p ≡ 1 mod 3, then all ordinary elliptic curves over Fp with endomorphism
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algebra Q(ζ3) are isogenous. (This assertion seems to be well known.) This implies
that each such elliptic curve is isogenous over Fp to y2 = x3 − 1.

(ii) Take r = 5. We have isg(5) = 1. It follows from Remark 1.11 that if
p ≡ 1 mod 5, then all abelian varieties over Fp with endomorphism algebra Q(ζ5)
are two-dimensional simple ordinary and mutually isogenous. This implies that each
such abelian variety is isogenous to the jacobian of the genus 2 curve y2 = x5 − 1.

Example 1.13. Let us take r = 17. Then cl(Q(ζ17)) = 1 [7]. Let us choose
a prime p that is congruent to 1 modulo 17 (e. g., p = 103). We have

isg(17) =
28

16
= 16.

By Theorem 1.6, there are precisely 16 isogeny classes of simple ordinary 16
2 =

8-dimensional abelian varieties over Fp with endomorphism algebras Q(ζ17). In
addition, each of these isogeny classes contains an abelian eightfold that is defined
with all its endomorphisms over Fp.

This implies that there exist sixteen 8-dimensional ordinary simple abelian vari-
eties A1, . . . , A16 over Fp that are mutually non-isogenous but each endomorphism
algebra End0(Ai) is isomorphic to Q(ζ17) (for all i with 1 ⩽ i ⩽ 16). In particular,

End0(Ai) ∼= End0(Aj) ∀ i, j, 1 ⩽ i < j ⩽ 16.

In addition, each Ai and all its endomorphisms are defined over Fp. This gives
an answer to a question of L. Watson [8].

The following assertion is a natural generalization of Corollary 1.8.

Corollary 1.14. Let r be an odd prime and r − 1 = 2n ·m where n is a positive
integer and m is a positive odd integer. Let H be the only order m subgroup of the
cyclic Galois group

Gal(Q(ζr)/Q) = (Z/rZ)∗

of order r − 1. Let
K = K(r) := Q(ζr)

H (2)

be the subfield of H-invariants in Q(ζr).
Then
(0) K(r) is a CM field that is a cyclic degree 2n extension of Q. In addition,

a prime p splits completely in K(r) if and only if p ̸= r and p mod r is
a 2nth power in Fr .

(i) Let p be a prime and A an abelian variety over Fp such that End0(A) is
isomorphic to K(r) .
Then p splits completely in K(r) and A is an ordinary simple abelian variety
of dimension 2n−1 .

(ii) Let p be a prime that splits completely in K(r) and let q = pc , where c =
exp(K(r)).
Then there are precisely 22

n−1−n isogeny classes of abelian varieties A
over Fp , whose endomorphism algebra End0(A) is isomorphic to K(r) . In
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addition, each of these isogeny classes contains an abelian variety that is
defined with all its endomorphisms over Fq .

Remark 1.15. Let K = K(r). It is well known that r is totally ramified in Q(ζr) and
therefore in its subfield K as well. This implies that if K0 is the only degree 2n−1

subfield of K, which is the maximal totally real subfield of K, then the quadratic
extension K/K0 is ramified. On the other hand, it is known ([9], § 38, [10], § 13,
pp. 77, 78) that cl(K(r)) is odd (and therefore c = exp(K(r)) is also odd). It follows
from [9], § 37, Satz 42 (see also [10], Corollary 13.10, p. 76) that K0 has units with
independent signs (there are units of K0 of every possible signature), which implies
(thanks to [10], Lemma 12.2, p. 55) that every totally positive unit in K0 is a square
in K0 and therefore is a square in UK0 .

Example 1.16. Let us fix an integer n ⩾ 2. Here is a construction of infinitely
many mutually nonisomorphic CM fields that are cyclic degree 2n extensions of Q.
Let us consider the infinite (thanks to Dirichlet’s theorem) set of primes r that are
congruent to 1+ 2n modulo 2n+1. Then r− 1 = 2n ·m, where m is an odd positive
integer. In light of Corollary 1.14, the corresponding subfield K(r) of Q(ζr) defined
by (2) enjoys the desired properties. Since K(r) is a subfield of Q(ζr), the field
extension K(r)/Q is ramified precisely at r. This implies that the fields K(r) are
mutually nonisomorphic (and even linearly disjoint) for distinct r.

The paper is organized as follows. In § 2 we review basic results about maxi-
mal ideals of OK . In § 3 we concentrate on the so called ordinary Weil’s q-num-
bers in K. In § 4 we discuss simple abelian varieties over Fq, whose Weil’s numbers
lie in K. In § 5 we discuss some basic facts of Honda–Tate theory (see [11]–[13]).
The main results will be proved in § 6.

In what follows, we will freely use the following elementary well-known observa-
tion. Any Q-subalgebra with 1 of a number field K is actually a subfield of K ; in
particular, it is also a number field. For example, if u is an element of K , then the
subfield Q(u) generated by u coincides with the Q-subalgebra Q[u] generated by u.

§ 2. Preliminaries

2.1. We keep the notation and assumptions of § 1.1 and Theorem 1.6. As usual,
Q, R, C stand for the fields of rational, real and complex numbers and Q for the
(algebraically closed) subfield of all algebraic numbers in C. We write Z (respec-
tively, Z+) for the ring of integers (respectively, for the additive semigroup of non-
negative integers). If T is a finite set, then we write #(T ) for the number of its
elements.

Recall (see [12], [13]) that an algebraic integer π ∈ Q is called a Weil’s q-number
if all its Galois-conjugates have the archimedean absolute value √

q.
Throughout this paper, n is a positive integer and K is a CM field that is

a degree 2n cyclic extension of Q. We view K as a subfield of C; in particular, K
is a subfield of Q that is stable under the complex conjugation. We denote by

ρ : K → K
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the restriction of the complex conjugation to K; one may view ρ as an element of
order 2 in the Galois group

G := Gal(K/Q),

where G is a cyclic group of order 2n.

Remark 2.2. Let π ∈ K ⊂ C.
• Suppose that π is a Weil’s q-number. Then π is a algebraic integer, i. e.,
π ∈ OK . Since the absolute value of π is the square root of q, we have
π · ρ(π) = q.

• Conversely, suppose that π ∈ OK (i. e., π is an algebraic integer) and

π · ρ(π) = q. (3)

Since K/Q is Galois, all the Galois-conjugates of π also lie in OK and con-
stitute the orbit

Gπ = {σ(π) | σ ∈ G}

of G. Since G is commutative and contains ρ, it follows from (3) that for all
σ ∈ G

σ(π) · ρ(σ(π)) = σ(π) · σ(ρ(π)) = σ(π · ρ(π)) = σ(q) = q.

It follows readily that π ∈ K is a Weil’s q-number if and only if π ∈ OK

and (3) holds.

We write W (q,K) for the set of Weil’s q-numbers in K and µK for the (finite
cyclic) multiplicative group of roots of unity in K. Clearly, W (q,K) is a finite G-
stable subset of OK , which is also stable under multiplication by elements
of µK . The latter gives rise to the free action of µK on W (q,K) defined by

µK ×W (q,K) → W (q,K), ζ, π 7→ ζπ ∀ ζ ∈ µK , π ∈ W (q,K).

Remark 2.3. It is well known (and follows easily from a theorem of Kronecker [14],
Chapter IV, § 4, Theorem 8) that π1, π2 ∈ W (q,K) lie in the same µK-orbit (i. e.,
π2/π1 is a root of unity) if and only if the ideals π1OK and π2OK of OK coincide.

Recall (§ 2.1) that K is a subfield of the field C of complex numbers that is
stable under the complex conjugation. Then

K0 := K ∩ R

is a (maximal) totally real number (sub)field, whose degree [K0 : Q] is

[K : Q]

2
=

2n

2
= 2n−1.

2.4. Recall that the Galois group G = Gal(K/Q) is a cyclic group of order 2n.
Hence, it has precisely one element of order 2 and therefore this element must
coincide with the complex conjugation

ρ : K → K.
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The properties of G imply that every nontrivial subgroup H of G contains ρ. It
follows that every proper subfield of K is totally real. Indeed, each such subfield is
the subfield KH of H-invariants for a certain nontrivial subgroup H of G. Since H
contains ρ, the subfield KH consists of ρ-invaraiants and therefore is totally real;
in particular,

KH ⊂ R.
2.5. Let ℓ be a prime and S(ℓ) be the set of maximal ideals P of OK that divide ℓ.

Since K/Q is a Galois extension, G acts transitively on S(ℓ). In particular, #(S(ℓ))
divides #(G) = 2n. This implies that if ℓ splits completely in K, i. e.,

#(S(ℓ)) = 2n = #(G),

then the action of G on S(ℓ) is free.
On the other hand, if a prime ℓ does not split completely in K, i. e.,

#(S(ℓ)) < 2n = #(G),

then the action of G on S(ℓ) is not free. Let H(ℓ) be the stabilizer of any P ∈ S(ℓ),
which does not depend on a choice of P, because G is commutative. Then H(ℓ) is
a nontrivial subgroup of G and therefore contains ρ, i. e.,

ρ(P) = P ∀P ∈ S(ℓ)

if ℓ does not split completely in K.
Let e(ℓ) be the ramification index in K/Q of P ∈ S(ℓ), which does not depend

on P, because K/Q is Galois. We have the equality of ideals

ℓOK =
∏

P∈S(ℓ)

Pe(ℓ). (4)

It follows that K/Q is unramified at ℓ if and only if e(ℓ) = 1. We write

ordP : K∗ ↠ Z (5)

for the discrete valuation map attached to P. We have

ordP(ℓ) = e(ℓ) ∀P ∈ S(ℓ), (6)
ordP(u) ⩾ 0 ∀u ∈ OR \ {0}, P ∈ S(ℓ), (7)

ordP(ρ(u)) = ordρ(P)(u) ∀u ∈ K∗, P ∈ S(ℓ). (8)

2.6. Let p be a prime, j a positive integer, and q = pj .
Let π ∈ OK be a Weil’s q = pj-number. Let us consider the ideal πOK in OK .

Then there is a nonnegative integer-valued function

dπ : S(p) → Z+, P 7→ dπ(P) := ordP(π) (9)

such that
πOK =

∏
P∈S(p)

Pdπ(P). (10)

It follows from (3) that

dπ(P) + dπ(ρ(P)) = ordP(q) = j · e(ℓ) ∀P ∈ S(p). (11)
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Lemma 2.7. Let π ∈ OK be a Weil’s q = pj-number. If p does not split completely
in K , then π2/q is a root of unity.

Proof. Since p does not split completely in K, it follows from arguments of § 2.4
that

ρ(P) = P ∀P ∈ S(p).

It follows from (11) that

dπ(P) =
j · e(p)

2
∀P ∈ S(p);

in particular, j is even if e(p) = 1 (i. e., if K/Q is unramified at p). This implies that
π2/q is a P-adic unit for all P ∈ S(p). On the other hand, it follows from (3)
that π2/q is an ℓ-adic unit for all primes ℓ ̸= p. It follows from the very definition
of Weil’s numbers that ∣∣∣∣σ(π2

q

)∣∣∣∣
∞

= 1 ∀σ ∈ G.

(Here | · |∞ : C → R+ is the standard archimedean value on C.) Now it follows
from a classical theorem of Kronecker [14], Chapter IV, § 4, Theorem 8, that π2/q
is a root of unity. □

Lemma 2.8. Suppose that a prime p completely splits in K . (In particular, K/Q
is unramified at p.) Let π ∈ OK be a Weil’s q = pj-number.

Then either Q(π) = K or j is even and π = ±pj/2 .

Proof. So, K/Q is unramified at p, i. e., e(p) = 1 and

pOK =
∏

P∈S(p)

P. (12)

This implies that
qOK =

∏
P∈S(p)

Pj . (13)

Since p splits completely in K, the group G acts freely on S(p), in light of § 2.5.
In particular,

P ̸= ρ(P) ∀P ∈ S(p). (14)

If the subfield Q(π) of K does not coincide with K, then it is totally real, thanks
to arguments of § 2.4. This implies that ρ(π) = π. It follows from (3) that π2 = q,
i. e., π = ±pj/2. This implies that the ideal qOK is a square. It follows from (13)
that j is even. □

2.9. Suppose that a prime p completely splits in K.

Definition 2.10. Let π ∈ OK be a Weil’s q = pj-number. We say that π is
an ordinary Weil’s q-number if the “slope” ordP(α)/ ordP(q) is an integer for all
P ∈ S(p).

It (is well known and) follows from (3), (7) and (8) that if π is an ordinary Weil’s
q-number, then

ordP(π)

ordP(q)
= 0 or 1. (15)
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§ 3. Equivalence classes of ordinary Weil’s q-numbers

Let p be a prime that splits completely in K. Throughout this section, by Weil’s
numbers we mean Weil’s q-numbers where q is a power of p. We write W (q,K) for
the set of Weil’s q-numbers in K. We write µK for the (finite cyclic) multiplicative
group of roots of unity in K.

Definition 3.1. Let q and q′ be integers > 1 that are integral powers of p. Let
π ∈ K (respectively, π′ ∈ K) be a Weil’s q-number (respectively, Weil’s q′-number).
Following Honda [12], we say that π and π′ are equivalent, if there are positive
integers a and b such that πa is Galois-conjugate to π′b.

Clearly, if π and π′ are equivalent, then π is ordinary if and only if π′ is ordinary.
In order to classify ordinary Weil’s numbers in K up to equivalence, we introduce
the following notion that is inspired by the notion of CM type for complex abelian
varieties [15] (see also [12], § 1, Theorem 2, and [13], § 5).

Definition 3.2. We call a subset Φ ⊂ S(p) a p-type if S(p) is a disjoint union of Φ
and ρ(Φ).

Clearly, Φ ⊂ S(p) is a p-type if and only if the following two conditions hold
(recall that [K : Q] = 2n).

(i) #(Φ) = 2n−1.
(ii) If P ∈ Φ, then ρ(P) /∈ Φ.
It is also clear that Φ ⊂ S(p) is a p-type if and only if ρ(Φ) is a p-type.

Let H(p) be the set of nonzero ideals B of OK such that

B · ρ(B) = p · OK .

In light of (12) and (14), an ideal B of OK lies in H(p) if and only if there exists
a 2n−1-element subset Φ = Φ(B) of H(p) that meets every ρ-orbit of S(p) at
exactly one place and

B =
∏

P∈Φ(B)

P. (16)

Such a Φ(B) is uniquely determined by B ∈ H(p): namely, it coincides with the
set of maximal ideals in OK that contain B. This implies that

#(H(p)) = 22
n−1

. (17)

Clearly,
Φ(σ(B)) = σ(Φ(B)) ∀σ ∈ G. (18)

Lemma 3.3. Let m be a positive integer and π be a Weil’s q = pm-number in K .
Then the following conditions are equivalent:

(i) π is ordinary;
(ii) there exists an ideal B ∈ H(p) such that

πOK = Bm; (19)

(iii) the subset

Ψ(π) :=

{
P ∈ S(p)

∣∣∣∣ ordP(π)

ordP(q)
= 1

}
(20)

is a p-type.
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If these equivalent conditions hold, then such an ideal B is unique and

Φ(B) = Ψ(π).

Proof. We have
πOK =

∏
P∈S(p)

Pd(P), (21)

for some d(P) ∈ Z+ such that

d(P) + d(ρ(P)) = m, (22)

ordP(π)

ordP(q)
=

d(P)

m
∀P ∈ S(p). (23)

This implies that

Ψ(π) := {P ∈ S(p) | d(P) = m} ⊂ S(p). (24)

Combining (24) with (22), we obtain that

ρ(Ψ(π)) := {P ∈ S(p) | d(P) = 0} =

{
P ∈ S(p)

∣∣∣∣ ordP(π)

ordP(q)
= 0

}
⊂ S(p); (25)

in particular, the subsets Ψ(π) and ρ(Ψ(π)) do not meet each other. In light of (20)
and (25) combined with (15), π is ordinary if and only if S(p) is a disjoint union
of Ψ(π) and ρ(Ψ(π)), i. e., Ψ(π) is a p-type. This proves the equivalence of (i)
and (iii). If (i) and (iii) hold, then it follows from (21) that

πOK =
∏

P∈Ψ(π)

Pm = Bm, where B :=
∏

P∈Ψ(π)

P.

Since Ψ(π) is a p-type, B ∈ H(p) and, obviously, Φ(B) = Ψ(π). This proves that
equivalent (i) and (iii) imply (ii).

Let us assume that (ii) holds. This means that there is B ∈ H(p) that satis-
fies (19). This implies that

B =
∏

P∈Φ(B)

P, πOK = Bm =
∏

P∈Φ(B)

Pm.

It follows that

ordP(π)

ordP(q)
= 1 ∀P ∈ Φ(B),

ordP(π)

ordP(q)
= 0 ∀P /∈ Φ(B).

This implies that π is ordinary and therefore (ii) implies (i). So, we have proved
the equivalence of (i), (ii), (iii). The uniqueness of such B is obvious. □
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Lemma 3.4. The natural action of G on H(p) is free. In particular, H(p) parti-
tions into a disjoint union of 22

n−1−n orbits of G, each of which consists of 2n

elements.

Proof. Suppose that there exists B ∈ H(p) such that its stabilizer

GB = {σ ∈ G | σ(B) = B}

is a nontrivial subgroup. Then GB must contain ρ, thanks to the arguments of § 2.4.
This means that ρ(B) = B and therefore

p · OK = B · ρ(B) = B2,

which is not true, since p is unramified in K. The obtained contradiction proves
that the action of G on H(p) is free. Hence, every G-orbit in H(p) consists of
#(G) = 2n elements and the number of such orbits is

#(H(p))

#(G)
=

22
n−1

2n
= 22

n−1−n.

Lemma is proved. □

In what follows we define (noncanonically) certain G-equivariant injective maps
Z, Π and Π1 from H(p) to K; they will play a crucial role in the classification of
ordinary Weil’s numbers in K up to equivalence.

Corollary 3.5. Let c = exp(K). Then there exists a G-equivariant map

Z : H(p) ↪→ OK \ {0} ⊂ OK ⊂ K (26)

such that Z(B) is a generator of Bc for all B ∈ H(p).

Proof. We define Z separately for each G-orbit O ⊂ H(p). Pick BO ∈ O and
choose a generator zO of the principal ideal Bc

O. In light of Lemma 3.4, if B ∈ O,
then there is precisely one σ ∈ G such that B = σ(BO). This implies that

Bc = σ(BO)
c = σ(Bc

O) = σ(zO)OK ,

i. e., σ(zO) is a generator of Bc. It remains to put

Z(B) := σ(zO).

Corollary is proved. □

Theorem 3.6. Let us put

c := exp(K), q := pc.

Let K0 = Kρ be the maximal totally real subfield of K .
There exists an injective map

Π: H(p) ↪→ W (q2,K), B 7→ Π(B) (27)

that enjoys the following properties.
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(0) Π is G-equivariant, i.e.,

Π(σ(B)) = σ(Π(B)) ∀σ ∈ G, B ∈ H(p).

(i) For all B ∈ H(p) the ideal Π(B)OK coincides with B2c .
(ii) The image Π(H(p)) consists of ordinary Weil’s q2-numbers.
(iii) If π′ is an ordinary Weil’s pm-number in K , then there exists precisely one

B ∈ H(p) such that the ratio (π′)2c/Π(B)m is a root of unity.
(iv) Let B1,B2 ∈ H(p). Then Weil’s q2-numbers Π(B1) and Π(B2) are equiva-

lent if and only if B1 and B2 lie in the same G-orbit.
(v) If h is a positive integer, then the subfield Q(Π(B)h) of K generated by

Π(B)h coincides with K .
(vi) Suppose that every totally positive unit in UK0

is a square in K0 (and there-
fore in UK0

). Then there exists a map

Π0 : H(p) → W (q,K)

that enjoys the following properties:
(vi-a) Π0(B)2 = Π(B) for all B;
(vi-b) Π0 is G-equivariant “up to sign”, i.e.,

Π0(σ(B)) = ±σ(Π0(B)) ∀σ ∈ G, B ∈ H(p);

(vi-c) if h is a positive integer, then the subfield Q(Π0(B)h) of K generated
by Π0(B)h coincides with K ;

(vi-d) Π0(B) is an ordinary Weil’s q-number for all B ∈ H(p).

Proof. Let us choose Z : H(p) → OE \ {0} that enjoys the properties described in
Corollary 3.5. Let B ∈ H(p). In order to define Π(B), notice that

B · ρ(B) = pOK , Bc = zOK ,

where
z = Z(B) ∈ OK \ {0}. (28)

Then zρ(z) is a generator of the ideal

Bc · ρ(Bc) = (B · ρ(B))
c
= pc · OK = qOK .

Since ρ is the complex conjugation, zρ(z) is a real (i. e., ρ-invariant) totally positive
element of OK . Clearly,

u :=
zρ(z)

q

is an invertible element of OK that is also ρ-invariant and totally positive unit
in UK0

. Obviously,

q =
z · ρ(z)

u
.

Now let us put

Π(B) := q · z

ρ(z)
=

z2

zρ(z)/q
=

z2

u
∈ OK . (29)
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If u is a square in K0, then there is a unit u0 in K0 such that u = u2
0. If this is the

case, then let us put

Π0(B) :=
z

u0
∈ OK and get Π0(B)2 =

(
z

u0

)2

=
z2

u
= Π(B). (30)

Clearly,
Π(B) · OK = z2 · OK = (z · OK)2 = (Bc)2 = B2c, (31)

which proves (i). In order to check that Π(B) is a Weil’s q2-number, notice that

Π(B) · ρ(Π(B)) = q · z

ρ(z)
· ρ

(
q · z

ρ(z)

)
= q2 · z

ρ(z)
· ρ(z)

z
= q2.

In light of Remark 2.2, this proves that Π(B) is a Weil’s q2-number. It follows
from (30) that if Π0(B) is defined, then it is a Weil’s q-number. By construction,

Π(B)OK = B2c,

which also implies that Π(B) is p2c = q2-ordinary Weil’s number. The G-invariance
of Z (see Corollary 3.5) combined with (28) and (29) implies the G-equivari-
ance of Π, which proves (0). The injectiveness of Π follows from (31). This proves
(i) and (ii).

In order to prove (v), notice that if Q(Π(B)h) does not coincide with K, then it
consists of ρ-invariants (§ 2.4). In particular, the ideal Π(B)hOK = B2ch coincides
with its complex-conjugate

ρ
(
Π(B)hOK

)
= ρ(B2ch) = ρ(B)2ch.

This implies that B = ρ(B), which is not the case, since B ∈ H(p). The obtained
contradiction proves (v).

In order to prove (iii), we need to check that if π′ is an ordinary Weil’s pm-number
in K, then it is equivalent to Π(B) for some B ∈ H(p). In order to do that, let us
consider the ideal M := π′OK in OK . Since π′ · ρ(π′) = pm, we get M · ρ(M) =
pmOK . It follows that

M =
∏

P∈S(p)

Pd(P), d(P) + d(ρ(P)) = m ∀P ∈ S(p).

The ordinarity of M implies that

d(P) = 0 or m ∀P ∈ S(p).

This implies that if we put

Φ = {P ∈ S(p) | d(P) = m} ⊂ S(p),

then Φ is a p-type and

M =
∏
P∈Φ

Pm =

(∏
P∈Φ

P

)m

.
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It is also clear that
B :=

∏
P∈Φ

P ∈ H(p),

and

(π′)2cOK = M2c = B2cm = (B2c)m =
(
Π(B)OK

)m
= Π(Bm)OK .

It follows from Remark 2.3 that the ratio Π(B)m/(π′)2c is a root of unity. The
uniqueness follows from the already proved (i).

Let us prove (iv). The already proved (0) tells us that if B2 = σ(B1) for σ ∈ G,
then Π(B2) = σ(Π(B1)) and therefore Weil’s numbers Π(B1) and Π(B2) are equiv-
alent.

Conversely, suppose that Π(B1) and Π(B2) are equivalent. This means that
there are positive integers a, b, a Galois automorphism σ ∈ G, and a root of unity
ζ ∈ µK such that

Π(B2)
a = ζ · σ(Π(B1))

b.

This implies the equality of the corresponding ideals in OK :

Π(B2)
aOK = σ(Π(B1))

bOK = Π(σ(B1))
b.

This means (in light of already proved (i)) that

B2ca
2 = (σ(B1))

2cb,

which implies B2 = σ(B1). Hence B1 and B2 lie in the same G-orbit.
Let us prove (vi). Actually, we have already constructed the map Π0 : H(p) →

OK , checked that its image lies in W (q,K); we have also proved property (vi-a).
As for (vi-b), it follows readily from (30) combined with the G-equivariance of Π. As
for (vi-c), it follows readily from (v) combined with (30). In order to prove (vi-d),
it suffices to recall that Π(B) is an ordinary Weil’s q2-number and notice that in
light of (30), the integer

ordP(Π(B))

ordP(q2)
=

2 ordP(Π0(B))

2 ordP(q)
=

ordP(Π0(B))

ordP(q)
.

Theorem 3.6 is proved. □

§ 4. Abelian varieties with Weil’s numbers in K

As above, p is a prime, m a positive integer, and q = pm.

Theorem 4.1. Let A be a simple abelian variety over k = Fq such that the corre-
sponding Weil’s q-number

πA ∈ K.

Let Q(πA) be the subfield of K generated by πA .
(i) Suppose that either Q(πA) ̸= K or p does not split completely in K .
Then A is supersingular.
(ii) If p splits completely in K , Q(πA) = K , and πA is not ordinary, then the

division Q-algebra End0k(A) is not commutative.
(iii) If πA is ordinary, then K = Q(πA) and End0k(A) ∼= K ; in particular,

End0k(A) is commutative.
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Proof. (i) It follows from Lemmas 2.7 and 2.8 that π2
A/q is a root of unity. This

means that A is supersingular.
(ii), (iii) Recall (see [11], [13]) that E := End0k(A) is a central division algebra

over the field Q(πA) = K. Since p splits completely in K, the P-adic completion
KP of K coincides with Qp, i. e.,

[KP : Qp] = 1 ∀P ∈ S(p).

By [13], Theorem 1, the local P-adic invariant

invP(E) ∈ Q/Z

of the central division K-algebra E is given by the formula

invP(E) =
ordP(πA)

ordP(q)
[KP : Qp] mod Z =

ordP(πA)

ordP(q)
mod Z ∈ Q/Z. (32)

All other local invariants of E (outside S(p)) are 0 (ibid).
Suppose that πA is ordinary. Then Q(πA) = K, because otherwise Q(πA) ⊂ R

and therefore πA is real, i. e., A is supersingular [13], Examples, which is not the
case. Since πA is ordinary, all the slopes ordP(πA)/ ordP(q) are integers and
therefore invP(E) = 0 for all P ∈ S(p). This implies that the division algebra
E = End0k(A) is actually a field, i. e., is isomorphic to K. This proves (iii).

In order to prove (ii), assume that πA is not ordinary. Then there is a maximal
ideal P ∈ S(p) such that the ratio ordP(πA)/ ordP(q) is not an integer, i. e.,

ordP(πA)

ordP(q)
mod Z ̸= 0 in Q/Z. (33)

Combining (33) with (32), we obtain that invP(E) ̸= 0. It follows that E = End0k(A)
does not coincide with its center, i. e., is noncommutative. This proves (ii). □

Remark 4.2. Let A be a simple abelian variety over Fq such that πA ∈ K. Obvi-
ously, A is ordinary if and only if πA is ordinary.

§ 5. Honda–Tate theory for ordinary abelian varieties

As above, p is a prime that splits completely in K, m a positive integer, and
q = pm.

Let π ∈ K be a Weil’s q-number. The Honda–Tate theory (see [11]–[13]) attaches
to π a simple abelian variety A over Fq that is defined up to an Fq-isogeny and
enjoys the following properties.

Let FrA : A → A be the Frobenius endomorphism of A and F := Q[FrA] be the
Q-subalgebra of the division Q-algebra E := End0Fq

(A) (which is actually a sub-
field). Then F is the center of E and there is a field embedding

i : F ↪→ C such that i(FrA) = π.
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Lemma 5.1. Suppose π is ordinary and Q(πh) = K for all positive integers h.
Then A is an absolutely simple 2n−1-dimensional ordinary abelian variety,
End0(A) ∼= K , and all endomorphisms of A are defined over Fq .

Proof. Since Q(π) = K, we get i(F ) = K. In particular, number fields K and F
are isomorphic. In light of Theorem 4.1, A is an ordinary abelian variety with
commutative endomorphism algebra E = F ∼= K. By Theorem 2 (c) of [11], § 3,

dim(A) =
[E : Q]

2
=

[K : Q]

2
= 2n−1.

We are going to prove that A is absolutely simple and all its endomorphisms are
defined over Fq. Let h be a positive integer and k = Fqh a degree h field extension
of Fq. Let Ak = A ×Fq

k be the abelian variety over k obtained from A by the
extension of scalars. There is the natural embedding (inclusion) of Q-algebras

End0Fq
(A) ⊂ End0k(Ak)

such that the Frobenius endomorphism FrAk
coincides with FrhA. In particular,

Q[FrAk
] ⊂ Q[FrA] = F.

In addition,
i(FrAk

) = i(FrhA) = i(FrA)
h = πh.

Since Q[πh] = K = Q(π), we get

i(Q[FrAk
]) = K = i(Q[FrA]).

Hence, Q[FrAk
] = Q[FrA] is a number field of degree 2 dim(A) = 2 dim(Ak). Apply-

ing again Theorem 2 (c) of [11], § 3, to Ak, we conclude that

End0(Ak) = Q[FrAk
] = Q[FrA] = End0Fq

(A)

for all finite overfields k of Fq. This implies that

End0(Ak) = End0Fq
(A),

i. e., all the endomorphisms of A are defined over Fq. In particular, A is absolutely
simple and End0(A) ∼= K. □

§ 6. Proofs of main results

As above, c = exp(K), a prime p splits completely in K and q = pc.

Proof of Theorem 1.6. Let Π: H(p) → W (q2,K) be as in Theorem 3.6. Let
B ∈ H(p) and let Π(B) be the corresponding ordinary Weil’s q2-number in K.
In light of Theorem 3.6 (v), Q[Π(B)h] = K for all positive integers h. In light
of Lemma 5.1 applied to q2 and Π(B), the Honda–Tate theory [11]–[13] attaches
to Π(B) an absolutely simple 2n−1-dimensional abelian variety A = A(B) over Fq2

(that is defined up to an Fq2-isogeny) such that End0(A(B)) ∼= K, and all endo-
morphisms of A(B) are defined over Fq2 .
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By Theorem 3.6 (iv), if B1,B2 ∈ H(p), then the Weil numbers Π(B1) and
Π(B2) are equivalent if and only if B1, and B2 belong to the same G-orbit. In
light of [11], Theorem 1, [12], p. 84, combined with Lemma 3.4, all the A(B) lie
in precisely 22

n−1−n isogeny classes of aelian varieties over Fp. We also know that
each of these varieties is ordinary, has dimension 2n−1 and their endomorphism
algebras are isomorphic to K.

Now, let us prove that each abelian variety B over Fp, whose endomorphism
algebra is isomorphic to K, is isogenous to one of A(B) over Fp.

In order to do that, first, notice that since K is a field, B is simple over Fp.
Second, B is defined with all its endomorphisms over a certain finite field k = Fq2h

(where h is a certain positive integer), i. e., there is a simple abelian variety Bk

over k such that
B = Bk ×k Fp, End0k(Bk) = End0(B) ∼= K.

Applying Theorem 2 (c) of [11], § 3, to Bk, we get

K ∼= End0(B) = End0k(Bk) = Q[FrBk
],

where FrBk
is the Frobenius endomorphism of Bk. This gives us a field isomorphism

Q[FrBk
] → K; let us denote by πBk

the image of FrBk
in K. Clearly, Q(πBk

)=K;
according to a classical result of Weil [16], πBk

is a Weil’s q2h-number. By Theo-
rem 4.1 (i) (applied to q2h instead of q), πBk

is ordinary, since End0k(Bk) ∼= K is
commutative. It follows from Theorem 3.6 (iii) that there is B ∈ H(p) such that
Weil’s numbers πBk

and Π(B) are equivalent. This means (thanks to Theorem 1
of [11], see also [12], pp. 83, 84) that absolutely simple abelian varieties Bk and
A(B) become isogenous over Fp. It follows that absolutely simple abelian varieties
B = Bk ×k Fp and A(B) are isogenous over Fp.

This proves (i), (ii) (1), and (ii) (2). It remains to prove (ii) (3). It suffices to
check that for each B ∈ H(p) there exists an abelian variety A0 that is defined
over Fq with all its endomorphisms and such that A(B) is isogenous to A0 over Fp.

Let Π0 : H(p) → W (q,K) be as in Theorem 3.6 (vi) and Π0(B) be the correspond-
ing ordinary Weil’s q-number in K. In light of Theorem 3.6 (vi-c), Q[Π0(B)h] = K
for all positive integers h. In light of Lemma 5.1 applied to q and Π0(B), the
Honda–Tate theory [11]–[13] attaches to Weil’s q-number Π0(B) an absolutely sim-
ple 2n−1-dimensional abelian variety A0 over Fq (that is defined up to an Fq-isogeny)
such that End0(A0) ∼= K, and all endomorphisms of A0 are defined over Fq.

Since Π0(B)2 = Π(B), Weil’s numbers Π0(B) and Π(B) are equivalent. As above,
in light of Theorem 1 of [11] (see also [12], pp. 83, 84), the corresponding absolutely
simple abelian varieties A0 and A(B) are isogenous over Fp. □

Proof of Corollary 1.14. Recall that r is an odd prime and ζr is a primitive rth
root of unity. Clearly, Q(ζr) is a CM field. Hence, its subfield K is either CM or
totally real. Since H has odd order m, it does not contain the complex conjugation
ρ : Q(ζr) → Q(ζr), because ρ has order 2. Hence, ρ acts nontrivially on K =
Q(ζr)

H = K(r), which implies that K is a CM field. (See also [10], p. 78.) Its
degree

[K : Q] =
[Q(ζr) : Q]

#(H)
=

m · 2n

m
= 2n.

We also know (Remark 1.15) that every totally positive unit in K0 is a square in K0.
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Clearly, K/Q is ramified at r and unramified at every prime p ̸= r. Let us find
which p ̸= r split completely in K. Let

fp ∈ Gal(Q(ζr)/Q) = (Z/rZ)∗

be the Frobenius element attached to p, which is characterized by the property

fp(ζr) = ζpr .

In other words,

fp = (p mod r) ∈ (Z/rZ)∗ = Gal(Q(ζr)/Q).

Clearly, p splits completely in K if and only if fp ∈ H. So, we need to find when
fp lies in H. In order to do it, notice that

H = {σ2n | σ ∈ Gal(Q(ζr)/Q) = (Z/rZ)∗}.

This implies that fp lies in H if and only if p mod r is a 2nth power in Z/rZ = Fr

completing the proof of (0).
Assertions (i) and (ii) follow from Theorem 1.6 combined with (0). □

Proof of Corollary 1.8. In the notation of Corollary 1.14, this is the case when
m = 1 and 2n = r−1. By little Fermat’s theorem, every nonzero a ∈ Z/rZ satisfies

a2
n

= ar−1 = 1.

Now the desired result follows readily from Corollary 1.14. □

Acknowledgements. I am grateful to Ley Watson for an interesting stimulating
question [8].
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